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Thermal fluctuations of the order parameter in an ultrathin triangular-shaped superconducting structure are
studied near Tc, in zero applied field. We find that the order parameter is prone to much larger fluctuations in
the corners of the structure as compared to its interior. This geometry-induced localization of thermal fluctua-
tions is attributed to the fact that condensate confinement in the corners is characterized by a lower effective
dimensionality, which favors stronger fluctuations.
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I. INTRODUCTION

Recent progress in growth technology has made it pos-
sible to fabricate ultrathin films, consisting of just few mono-
atomic layers. Very recently1 superconducting properties of
single-atomic layer films made of Pb were reported, includ-
ing even the observation of Abrikosov vortices. It is also
possible to make nanostructures and microstructures based
on such thin films. These nanostructures are generally of
much higher quality than those, used in earlier experiments,2

which, in particular, were not completely free of pinning
centers.

It is well known that the lower the dimensionality of the
system the stronger the thermal fluctuations. Ultrathin super-
conducting films as well as nanostructures based on such
films are obvious candidates for the observation of thermal
fluctuations. Indeed, it was reported very recently that strong
current-induced thermal fluctuations of the order parameter
were observed in superconducting nanowires fabricated in a
meander of NbN.3 Structures of this kind are used in highly
sensitive photodetectors. It turns out that the fluctuations are
a main source of dark-count events in such photodetectors:
this means that their effect is actually parasitic. Fluctuation
phenomena were interpreted in terms of a thermally acti-
vated entry of vortices, as well as by unbinding of vortex-
antivortex pairs.3 In another recent experiment,4 no hyster-
esis for vortex penetration and expulsion was observed in the
case of a nanoisland of Pb, which was so small that it could
accommodate only one vortex. In a similar experiment,5 per-
formed at lower temperature, some hysteresis was detected
but the width of the hysteresis region was significantly
smaller than expected from theory. A theoretical explanation
for these phenomena was very recently suggested by one of
us in terms of a thermal suppression of the surface barrier for
vortex entry/exit, which might occur in superconducting
nanoislands made of Pb in the regime of the ultimate single
vortex confinement.6 Previously, thermal activation of vorti-
ces over the surface barrier was demonstrated to be possible
in high-Tc low-dimensional structures.7

Geometry itself can play an important role in fluctuation
phenomena. The shape of islands, prepared by the method of
evaporation in ultrahigh vacuum, depends strongly on their
sizes. They grow according to the Stranski-Krastanov sce-
nario, i.e., starting from well-facetted nuclei.4 As a result,

islands with lateral dimensions of nearly 100 nm and smaller
have a hexagonal shape while larger islands tend to have a
triangular shape �see, e.g., Fig. 1�a� in Ref. 4�. At the same
time, it is known that the triangular geometry can lead to
very peculiar consequences for the superconducting conden-
sate confined in this geometry. For instance, it was shown in
Refs. 8 and 9 that stable vortex-antivortex molecules can
nucleate, when a homogeneous magnetic field is applied. The
aim of the present paper is to explore how triangularity, or
more generally the presence of sharp corners in a thin super-
conducting structure, influences thermal fluctuations of the
order parameter. The motivation to study the triangular ge-
ometry, apart from possible links with experiments, is that
one can expect thermal fluctuations to be stronger in the
corners of a triangular structure as compared to its interior
since the superconducting condensate in the corners is
strongly confined by samples’ borders. This implies that the
system somehow is characterized by lower effective dimen-
sionality than in the interior. It is however not evident a
priori if this rather general argument leads to any noticeable
effect for the fluctuations of the order parameter in a triangle
so that more careful inspection is certainly desirable. In order
to reveal the effect of geometry on spatial localization of
thermal fluctuations, we restrict ourselves to the case of zero
applied field but we consider temperatures both below and
above Tc. We apply the method of small-amplitude oscilla-
tions within the Ginzburg-Landau theory, and we do not con-
sider the possible excitation of vortices.

The paper is organized as follows. In Sec. II, we formu-
late our model. In Sec. III, we present our results for several
correlation functions both below and above Tc. We conclude
in Sec. IV.

II. MODEL

The derivation presented in this section applies for the
case of temperatures below Tc. It is straightforward to adopt
it for the case of temperatures above Tc.

A. General formulation

We start with the dimensionless Ginzburg-Landau func-
tional for the superconducting energy of the island of thick-
ness d, in zero applied field,
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F =
Bc�T�2

�0
��T�2d� d2r�− �f �2 +

1

2
�f �4 + ��f �2� , �1�

where integration is performed over the cross section of the
nanostructure, f is the dimensionless order parameter. All
distances are measured in units of the temperature-dependent
coherence length ��T�, and Bc�T� is the thermodynamical
critical field given by

Bc�T� =
�0

2�	2��T���T�
. �2�

We consider ultrathin islands, with d���T� so that the prob-
lem is two dimensional. The boundary condition for the or-
der parameter at each of the three edges of a sample is taken
in its usual form for the case of a superconductor/vacuum
interface,

� f

�n
= 0, �3�

where n is the unit vector in the direction perpendicular to
the edge.

Let us now estimate the ratio G�T� of the energy needed
to suppress the order parameter to zero within the volume

��T�2d and the thermal energy kBT, using realistic values
for all parameters for typical ultrathin nanostructures made
of Pb that have been realized in recent experiments. We de-
fine G�T� as

G�T� =
Bc�T�2��T�2d

2�0kBT
. �4�

For the penetration depth, we use the usual expression10 for

dirty superconductors, ��T��0.62�0	 �0/l
1−T/Tc

where
�0�40 nm is the penetration depth in bulk Pb, l�2d is the
quasiparticle mean-free part, and Tc=7.2 K. Then, for a film
of thickness 2 nm �similar to Ref. 5 and nearly three times
smaller than in Ref. 4�, operated at T=0.75Tc, we estimate
G�T�
10.

B. Fluctuative modes

Next, we expand the order parameter f around its mean
value in the absence of fluctuations,

f = 1 + �f . �5�

After substituting Eq. �5� into Eq. �1�, we obtain the expres-
sion for the increase in superconducting energy due to ther-
mal fluctuations,

�F =
Bc�T�2

�0
��T�2d� d2r���f �2 +

1

2
��f2 + �f�2� + ���f �2� ,

�6�

where we have kept only terms up to quadratic ones in �f
and �f�.

Obviously, �f can be represented as a superposition of
plane waves. However, �f for each fluctuative mode must
satisfy the boundary condition given by Eq. �3�, which is a

very strong restriction imposed by the geometry of our prob-
lem. In order to circumvent this difficulty, we will use, with
certain modifications, an approach applied very recently in
Ref. 11 for the triangular dot of graphene, for which exact
electronic wave functions were found. The major difference
with the graphene dot problem is in the boundary condition,
which is vanishing of the wave function at the triangle’s
border, instead of the vanishing of its first derivative �Eq.
�3��. Following Ref. 11, as a first step we focus on the sector,
confined between edges I and II �see Fig. 1� and we find the
form of �f , which satisfies boundary condition �Eq. �3�� at
these two edges. Consider a plane wave with the wave vector
k1= �kx ,ky�,

�1 = exp�− ik1r� . �7�

When reflected from edge I, it is converted into wave
�2 with k2= �kx ,−ky�. It is then easy to see that the sum
of �1 and �2 satisfies Eq. �3� at the edge I. This is in
contrast with Ref. 11, where the difference between
�1 and �2 was taken due to the different boundary condition.
When these two waves are reflected from edge II, two new
waves appear with k5=− 1

2 �kx+	3ky ,−	3kx+ky� and
k6=− 1

2 �kx−	3ky ,−	3kx−ky�. After the reflection from edge
I, these two ones give rise to two more waves with
k3=− 1

2 �kx−	3ky ,	3kx+ky� and k4=− 1
2 �kx+	3ky ,	3kx−ky�.

Finally, after reflecting from edge I, these last waves do not
lead to any new waves. Then, the sum of the six wave func-
tions �1+ ¯+�6 satisfies the boundary condition, given by
Eq. �3�, both at edges I and II, whatever k1 is. The same
boundary condition at edge III leads to quantization rules for
�kx ,ky�, which differ from those found in Ref. 11. It is easy to
see that the allowed �kx ,ky� split into two branches,

kx
�1� =

4�

3L
m , �8�

ky
�1� =

4�

3L
n	3, �9�

and

kx
�2� =

4�

3L
�m +

1

2
� , �10�

FIG. 1. Schematic image of a triangular structure. Numbers de-
pict points, the correlation functions being calculated along the
straight lines connecting these points �see in the text�.
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ky
�2� =

4�

3L
�n +

1

2
�	3, �11�

where L is the dimensionless length of the triangle’s edge
while m and n are arbitrary integer numbers.

For these two branches, eigenenergies are given by

Emn
�1� = �4�

3L
�2

�m2 + 3n2� , �12�

Emn
�2� = �4�

3L
�2
�m +

1

2
�2

+ 3�n +
1

2
�2� . �13�

Wave functions corresponding to different �m ,n� but the
same branch is not necessarily unique. By a proper choice of
m and n, we obtain the following basis of normalized and
unique wave functions:

	mn
�1� =

1
	6

��1
�1� + ¯ + �6

�1��, n 
 �m� , �14�

	mn
�1� = 1, n = m = 0, �15�

where �1
�1� , . . . ,�6

�1� depend on �kx
�1� ,ky

�1��, and

	mn
�2� =

1
	6

��1
�2� + ¯ + �6

�2��, n 
 �m + 1/2� , �16�

where �1
�2� , . . . ,�6

�2� depend on �kx
�2� ,ky

�2��.
We can expand the fluctuating contribution to the order

parameter in the constructed basis,

�f = �
n,m,�

cmn
���	mn

���, �17�

where �=1,2 stand for the two branches. We now substitute
expansion �17� in Eq. �6�. After performing the integration
over the triangle’s area, we arrive at the following expression
for the statistical sum:

Z = �
n,m,�

� d�Re�cmn
�����d�Im�cmn

�����

�exp�− G�T�
L2	3

4
��Re�cmn

�����2�Emn
��� + 2�

+ �Im�cmn
�����2Emn

����� .

It contains a product of Gaussian integrals, which can be
easily evaluated analytically as

Z = �
n,m,�

2�

L	Emn
����Emn

��� + 2�G�T�	3
. �18�

C. Correlation functions

In order to study the spatial localization of fluctuations in
the triangle below Tc, we analyze separately phase and den-
sity fluctuations since they behave in different ways. Namely,
these are fluctuations of the phase of the order parameter

which are responsible for the loss of the long-range order.12

It is straightforward to see, from Eq. �5�, that the phase 

of the order parameter can be expressed as


 =
1

2i
��f − �f�� . �19�

The quantity we are interested in is the correlation function,

Kph�r1,r2� = ��
�r1� − 
�r2��2�T. �20�

In an infinite isotropic system, this quantity depends only on
the distance �r2−r1�. It diverges logarithmically at large dis-
tances for two-dimensional systems, expressing the loss of
long-range order. However for a confined system with aniso-
tropic geometry, Kph�r1 ,r2� depends on both r1 and r2−r1.

Using Eqs. �17� and �19�, we arrive at the following ex-
pression for Kph�r1 ,r2�:

Kph�r1,r2� =
1

2 �
m,n,�

��Im�cmn
�����2�T�Re���mn

����r1,r2��2�

+ ��mn
����r1,r2��2� −

1

2 �
m,n,�

��Re�cmn
�����2�T

��Re���mn
����r1,r2��2� − ��mn

����r1,r2��2� , �21�

where

�mn
����r1,r2� = 	mn

����r1� − 	mn
����r2� . �22�

Thermally averaged �Re�cmn
�����2 and �Im�cmn

�����2 can be found
analytically as

��Re�cmn
�����2�T =

2

G�T�L2	3�Emn
��� + 2�

, �23�

��Im�cmn
�����2�T =

2

G�T�L2	3Emn
��� . �24�

By substituting Eqs. �23� and �24� into Eq. �21� and perform-
ing the summations, we calculate Kph�r1 ,r2� along various
lines inside the triangle. This sum, however, is divergent at
large m and n, and this divergency has to be cut in a standard
way �see, e.g., p. 336 of Ref. 12� at wave vectors
k
1 /��T�. We found that the dependence of the final results
on the particular choice of the cutoff value is rather weak,
within 10%.

In a similar way, we can express the fluctuation part �ns
of the density of superconducting electrons �f �2 in terms of �f
and �f�,

�ns = �f + �f�. �25�

By using the developed approach, it is also possible to find
the density-density correlation function, defined as

Kden�r1,r2� = ��ns�r1��ns�r2��T. �26�

Thermal fluctuations of the order parameter also occur at
temperatures above Tc. In this case, the equilibrium order
parameter is equal to zero, which leads to changes in Eqs. �5�
and �18� and therefore also in Eqs. �23� and �24�. We omit
the derivation and we will present our final results in Sec. III
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for the correlation function for the order parameter itself,
without separating the density and the phase

K�r1,r2� = �f�r1��f�r2��T. �27�

Above Tc, it is also convenient to normalize all the distances
by ��T�, where ��T�=	�2 /2m���T��.

III. RESULTS AND DISCUSSION

In this section, we discuss the behavior of the correlation
functions in the triangle both below and above Tc.

A. Temperatures below Tc

Our results for the dependence of the phase correlation
function Kph�r1 ,r2� on �r2−r1� along different paths are
shown in Fig. 2 for a triangle with L=8 �several hundreds of
nanometers for the case of a nanostructure made of Pb at
T=0.75Tc, G�T=0.75Tc�=10�. Different curves show the be-
havior of Kph�r1 ,r2� along straight lines connecting various
points inside the triangle, which are depicted in Fig. 1. Curve
1→2 corresponds to the path between the two corners of the
structure. Curve 1→3 gives Kph�r1 ,r2� along the bisector
starting from the corner. Curves 4→3 and 5→3 correspond
to lines in the interior region of the structure �lengths of
segments 1–4 and 2–3 are L /2 while lengths of segments
4–5 and 5–3 are the same�. Curve 6→7 shows Kph�r1 ,r2�
across the bisector �lengths of segments 1–6 and 1–7 are
L /5�.

The shape of all these curves is similar and it generally
resembles the behavior of the same correlation function for
an isotropic infinite two-dimensional system. Namely, it first
grows rapidly with increasing �r2−r1� and then starts to dem-
onstrate a smoother behavior. There are, however, obvious
differences between the curves, both quantitative and quali-
tative. First, it is seen that the initial increase in Kph�r1 ,r2� is
much larger �several times� for those paths which originate
from the corner �curves 1→2 and 1→3�, where, according
to our initial guess, fluctuations are stronger. Thus, we can

conclude that this guess is justified. Second, Kph�r1 ,r2� along
the curve 1→2 starts to rapidly increase again, when ap-
proaching the other corner, while such an increase for other
curves is not so pronounced. This feature implies that the
order parameter between different corners is more decoher-
ent, which again supports our hypothesis. For the range of
parameters used here, we see that the maximum 	Kph�r1 ,r2�
is nearly 0.4, which implies that the coherence between the
order parameter inside different corners starts to be lost.

Figure 3 gives the density-density correlation function
Kden�r1 ,r2� for three directions, along paths 1→2, 4→3,
and 5→3. We again see that the correlation function in the
corner �1→2� is much larger than the same function in the
interior �4→3 and 5→3�. This shows that not only the phase
of the order parameter but also the density of superconduct-
ing electrons fluctuates stronger in the corners. It is also of
interest to note that the comparison of Kden�r1 ,r2� along
paths 4→3 and 5→3 shows that fluctuations are stronger
near the triangle’s surface as compared to the central part of
the nanostructure.

The strength of thermal fluctuations at the given point r1
may be characterized by the density-density correlation func-
tion Kden�r1 ,r2� with �r2−r1�
��T� averaged over all such
values of r2.12,13 Although Kden�r1 ,r2� is usually peaked
within nearly 1.5��T� in the corners for various triangle’s
sizes, such an averaging implies that the typical width of the
geometry-induced fluctuating region in each of the three cor-
ners is broader: we estimate it to be several ��T�.

In order to visualize the effect of geometry on thermal
fluctuations, we construct a “phase diagram” for the case of a
triangular Pb nanostructure with the edge length 15��0� and
thickness d=5 nm. We take 1→3 path �along the bisector�
and for each point r at this path we calculate 	Kden�r ,r�,
which shows the average fluctuation of the density of super-
conducting electrons. We have chosen the following qualita-
tive criterion: if this quantity exceeds 0.15 at a certain tem-
perature, we enter the fluctuative regime. Our results for the
crossover between low-temperature and fluctuative regimes

FIG. 2. �Color online� Dependence of the correlation function
Kph�r1 ,r2� on �r2−r1� along different paths in the triangular struc-
ture below Tc. Red lines show Kph�r1 ,r2� along the paths, which
originate from the corner. Blue lines correspond to paths in the
interior of the structure. Green dashed line corresponds to the path
across the bisector.

FIG. 3. �Color online� Dependence of the correlation function
Kden�r1 ,r2� on �r2−r1� along different paths within the triangular
structure below Tc. Red line shows Kden�r1 ,r2� along the path,
which originates from the corner. Blue line corresponds to path,
which starts from the edge toward the interior of the structure.
Green line shows Kden�r1 ,r2� starting from the interior to the edge.
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are presented in Fig. 4 in the plane of the distance along the
1→3 path and 1−T /Tc. We indeed see that the characteristic
temperature for the crossover in the corners strongly depends
on the position. Of course, the transition between the two
domains in Fig. 4 is not abrupt. It is more appropriate to talk
of different regimes, which are separated by a crossover re-
gion. Thus, the suggested picture is very qualitative and it is
given for illustrative purposes to supplement an idea we want
to convey.

B. Temperatures above Tc

The order-parameter correlation function K�r1 ,r2� above
Tc, defined in Eq. �27�, has to decrease12 with increasing
�r2−r1�. The results of our calculations for K�r1 ,r2� along
different paths are presented in Fig. 5, where the correlation
function is plotted for T=1.25Tc for the triangle with length
L=8 �in terms of ��T��. K�r1 ,r2� is normalized by its value

K�r ,r� in the point 5, which is located in the central part of
the nanostructure �bulk�. We indeed see the expected rapid
decay of K�r1 ,r2� with increasing �r2−r1� but again the cor-
relation function calculated along the path, which originates
from the corner �1→2�, is rather different from those, which
correspond to lines inside the interior of the structure.
Namely, the average value of the density of superconducting
electrons induced by thermal fluctuations is much larger in
the corners. Fluctuations near the surface are stronger than
far from the surface �curves 4→3 and 5→3�. The width of
the geometry-enhanced fluctuating region in the corners is
again estimated to be several ��T�.

The comparison of our results for the correlation func-
tions below and above Tc shows that superconductivity is
getting suppressed, below Tc, starting from the corners,
while, above Tc, the order parameter preferentially nucleates
again in the corners. However, there is no contradiction since
if we consider a triangle with fixed sizes and if we start to
increase T toward Tc, ��T� becomes infinitely large at Tc.
This means that, close enough to Tc on both sides of the
transition, the triangle is actually in the zero-dimensional re-
gime so that the order parameter does not vary in space. In
other words, the fluctuating region in the vicinity of Tc ex-
pands from the corners to the whole structure, while by tun-
ing temperature away from Tc, one can make thermal fluc-
tuations stronger in the corners than in the interior. Of
course, the length of the triangle’s edge should be much
larger than ��0� in order to see such a spatial localization of
thermal fluctuations.

The geometry-induced localization of thermal fluctuations
is expected to occur in nanostructures of various shapes, not
only triangular ones. The general tendency is obvious: the
sharper the corner, the stronger the fluctuations in this corner.
For instance, in the corners of square-shaped samples, the
width of the fluctuative region can be expected to be much
smaller than in the corners of the triangular structures.

IV. CONCLUSION

We have studied thermal fluctuations of the order param-
eter in quasi-two-dimensional superconducting structures of
triangular shape. We considered the case of zero applied field
both below and above Tc. It was shown that the order param-
eter exhibits much larger fluctuations in the corners of the
structure and the width of such a geometry-induced fluctuat-
ing region is several ��T�. This unusual behavior can be at-
tributed to the fact that the confinement of the condensate in
the corners lowers locally the effective dimensionality of the
system, thus making thermal fluctuations more pronounced.
The condensate in the corners can serve as a source of ther-
mal noise in superconducting devices based on ultrathin
nanostructures and microstructures.
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FIG. 4. Phase diagram of the triangular structure below Tc indi-
cating the region where fluctuations are more pronounced.

FIG. 5. �Color online� Dependence of the correlation function
K�r1 ,r2� on �r2−r1� along different paths within the triangular
structure above Tc. Red line shows K�r1 ,r2� along the path, which
originates from the corner. Blue line corresponds to path, which
starts from the edge toward the interior of the structure. Green line
shows K�r1 ,r2� starting from the interior to the edge.
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